Аннотация:
Рассматриваются линейные разностные схемы с несколькими степенями свободы на одну ячейку для одномерного уравнения переноса. Численная ошибка решения таких схем обладает ошибкой $O(h^p + th^q)$, причём $p$ совпадает с порядком аппроксимации или превосходит его на единицу, а $q\geqslant p$. Доказывается, что существует такое отображение гладких функций на сеточное пространство, отличающегося от обычного (например, $L_2$-проекции) на величину порядка $h^p$, в смысле которого схема будет обладать $q$-м порядком аппроксимации. В отличие от одномерного случая, локальное отображение с требуемыми свойствами может не существовать. Приводятся достаточные условия его существования.
Ключевые слова:аппроксимация и точность, суперсходимость.