Аннотация:
Рассматривается вещественный многочлен от двух переменных. Его разложения вблизи нулевой критической точки начинаются с формы третьей степени. Находятся его простейшие формы, к которым приводится этот многочлен с помощью обратимых вещественных локальных аналитических замен координат. Сначала для кубической формы с помощью линейных замен координат получены нормальные формы. Их оказалось три. Затем для полного многочлена получены три нелинейные нормальные формы. Предложено упрощение вычисления нормальной формы. Рассмотрен содержательный пример.