Аннотация:
Классическая задача интерполяции и аппроксимации функций полиномами здесь рассматривается как частный случай спектрального представления функций. Этот подход был ранее развит нами для ортогональных полиномов Лежандра и Чебышева. Здесь в качестве базисных функций мы используем фундаментальные полиномы Ньютона. Показано, что спектральный подход имеет вычислительные преимущества по сравнению с методом разделенных разностей. В ряде задач интерполяции Ньютона и Эрмита неразличимы при нашем подходе и вычисляются по одним и тем же формулам. Также вычислительные алгоритмы, предложенные нами ранее с использованием ортогональных полиномов, переносятся без изменений на полиномы Ньютона и Эрмита.
Ключевые слова:спектральные методы, полиномы Ньютона и Эрмита, интерполяция и аппроксимация.