Аннотация:
Разложения многих элементарных и специальных функций в ряды по ортогональным полиномам имеют коэффициенты, известные в явном виде. Однако почти всегда эти коэффициенты иррациональны. Поэтому любой численный метод дает эти коэффициенты приближенно при расчетах в любой арифметике. Это относится и к спектральным методам, которые дают эффективные аппроксимации голономных функций. Однако в некоторых исключительных случаях коэффициенты разложений, полученные спектральным методом, оказываются рациональными и вычисляются точно в рациональной арифметике. Мы рассматриваем такие разложения по некоторым классическим ортогональным полиномам. Показано, что так можно получить бесконечный набор линейных форм для некоторых иррациональностей, в частности, для константы Эйлера.