Аннотация:
Предложена двухкамерная модель слуховой улитки человека. Движение жидкости описывается уравнениями гидродинамики и дополняется уравнением колебания мембраны. Уравнения линеаризуются по амплитуде колебаний, а решение их ищется в виде гармоник Фурье с заданной частотой. Получена система линейных краевых задач для обыкновенных дифференциальных уравнений с переменными коэффициентами. Численное решение этой системы разностными методами не представляется возможным, ввиду наличия большого параметра, а также близости этой задачи к сингулярной. Предложен новый численный метод без насыщения, который позволил получить решения в широком диапазоне частот с произвольной и контролируемой точностью. Расчеты подтвердили теорию Бекеши. Низкие звуки вызывают прогибание мембраны у верхушки улитки, а звуки высокой частоты – в области основного завитка улитки.