Аннотация:
В задаче об асимптотике аппроксимаций Эрмита-Падé для набора из двух аналитических функций с точками ветвления преобразование Коши предельной меры распределения полюсов аппроксимаций является алгебраической функцией третьего порядка. В общей ситуации это утверждение известно как гипотеза Наттолла. Наша цель, в предположении справедливости этой гипотезы найти эти алгебраические функции, в случае, когда данная пара функций имеет общие точки ветвления в количестве трех штук. В настоящем препринте мы обсуждаем постановку задачи, общие подходы к ее решению и исследуем, возникающие алгебраические функции нулевого рода. Случаи, соответствующие алгебраическим функциям более высокого рода будут рассмотрены в другой работе.