RUS  ENG
Полная версия
ЖУРНАЛЫ // Международный научно-исследовательский журнал // Архив

Междунар. науч.-исслед. журн., 2017, выпуск 5-3(59), страницы 162–164 (Mi irj183)

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

Метрическое пространство неограниченных выпуклых множеств и неограниченные многогранники

К. Д. Яксубаев, Ю. А. Шуклина

Астраханский государственный архитектурно - строительный университет

Аннотация: В работе дается определение метрического пространства H(K) неограниченных замкнутых выпуклых подмножеств банахового пространства X, имеющих один и тот же рецессивный K. В качестве расстояния используется метрика Хаусдорфа. В настоящей работе установлено, что свойства метрического пространства H(K) отличаются от свойств метрического пространства выпуклых компактов с метрикой Хаусдорфа. Установлено, что теорема аналогичная теореме об аппроксимации выпуклых компактов многогранниками неверна. То есть не каждый элемент метрического пространства H(K) может быть аппроксимирован обобщенными многогранниками, являющихся аналогами обычных многогранников. В работе вводится понятие обобщенного многогранника следующим образом. Элементы совокупности H(0) + K называются обобщенным многогранниками. Выведен критерий аппроксимации. Для того, чтобы элемент пространства H(K) мог быть аппроксимирован обобщенными многогранниками в метрике Хаусдорфа необходимо и достаточно, чтобы его опорная функция была равномерно непрерывной.

Ключевые слова: Пространство неограниченных замкнутых выпуклых множеств, метрика Хаусдорфа, опорная функция, нормальный конус, рецессивный конус.

DOI: 10.23670/IRJ.2017.59.103



© МИАН, 2024