Аннотация:
В статье рассмотрена задача оптимального управления бигармоническим уравнением с фазовыми ограничениями. Сформулировано и доказано необходимое условие оптимальности в форме принципа максимума Понтрягина. Этот результат может быть полезен как для организации последующей вычислительной процедуры типа метода последовательных приближений, так и для качественного анализа задачи, возможно, не приводящего к окончательному ответу, но устанавливающего важные свойства решения, то есть оптимального процесса. Отметим также, что бигармонические уравнения, описывающие здесь поведение объекта управления, постоянно возникают в задачах математической теории упругости и связанных с ними задачах оптимизации. Наличие фазовых ограничений в постановке рассматриваемой задачи оптимального управления как правило существенно осложняет процесс отыскания ее решения.