RUS  ENG
Полная версия
ЖУРНАЛЫ // Интеллектуальные системы. Теория и приложения // Архив

Интеллектуальные системы. Теория и приложения, 2021, том 25, выпуск 2, страницы 81–107 (Mi ista304)

Эта публикация цитируется в 2 статьях

Часть 2. Специальные вопросы теории интеллектуальных систем

Оценка длины минимальной параметрической сети в гиперпространствах при деформации граничного множества

А. М. Тропин

МГУ

Аннотация: Задача Ферма-Штейнера заключается в поиске такой точки метрического пространства Y (которую будем называть астровершиной Штейнера), что сумма расстояний от нее до точек некоторого конечного фиксированного подмножества $ A \subset Y $, называемого границей, минимальна. Минимальную сумму расстояний мы будем называть длиной минимальной астросети. Мы рассматриваем эту задачу в гиперпространстве $ Y = H(X) $ непустых, замкнутых и ограниченных подмножеств ограниченно компактного пространства X, в данном пространстве являющихся компактами. В настоящей статье описывается широкий класс деформаций граничных компактов, не увеличивающих длину минимальной астросети. Также рассматривается усреднение в смысле суммы Минковского конечного числа границ, состоящих из равного числа элементов, и показывается, что при таком усреднении также не увеличивается длина минимальной астросети.

Ключевые слова: задача Ферма-Штейнера, минимальное дерево Штейнера, минимальная параметрическая сеть, минимальная астросеть, астрокомпакт Штейнера, гиперпространство, расстояние Хаусдорфа.



© МИАН, 2024