Аннотация:
В работе кратко описывается развитие информационно-технических средств с применением биометрических данных, в частности параметров походки человека. Описываются проблемы оценки параметров походки с помощью акселерометра мобильного телефона в реальных условиях. Обосновывается актуальность настоящего исследования в области разработки алгоритмов оценки биометрических показателей походки по данным носимых устройств. Рассматриваются основные подходы к обработке данных акселерометра носимых устройств, указываются основные недостатки и проблемы при повышении качества оценки параметров походки. Описывается алгоритм обработки данных акселерометра мобильного телефона. В предлагаемом алгоритме отбор шаблонов движений при походке в регистрируемых данных осуществляется на основе статистической информации в рамках «плавающего» временного окна (частотная компонента с максимальным вкладом в спектре сигнала акселерометра, длительностью отбираемых временных сегментов), а также на основе значения коэффициента корреляции, отбираемых временных сегментов. На этапе сегментации данных временное окно для поиска сегментов движений, а также допустимые пороги отбора движений по их длительности изменяются в зависимости от индивидуальных особенностей походки и активности человека. Классификация отобранных сегментов по характеру движений походки осуществляется на основе нейронной сети прямого распространения. В качестве функции активации для скрытых слоев в работе применялся сигмоид, а для выходного слоя — нормализованная экспоненциальная функция. Обучение нейронной сети происходило методом градиентного обратного спуска с кросс-энтропией в качестве критерия оптимизации. За счет отбора сегментов с высоким коэффициентом корреляции классификация данных показывает качество различения движений выше 95%.