Аннотация:
В рамках линейной теории упругости с использованием модели изотропного тела сформулирована задача об установившихся колебаниях неоднородного полого цилиндра. Колебания цилиндра вызываются нагрузкой, приложенной к боковой поверхности, на торцах реализованы условия скользящей заделки. Переменные свойства материала описываются параметрами Ламе и плотностью, которые изменяются по радиальной и продольной координатам. Решение прямой задачи расчета колебаний цилиндра построено с помощью метода конечных элементов, реализованного в пакете FlexPDE, отмечены его основные преимущества. Для исследования влияния переменных свойств на значения резонансных частот колебаний и компонент поля перемещений рассмотрены законы изменения этих свойств в общем виде, используемом в современных работах для моделирования функционально-градиентных материалов. На основе проведенных численных расчетов исследована степень влияния амплитудных значений каждого из параметров Ламе и плотности на первую резонансную частоту и поле смещений. Также представлены графики, демонстрирующие влияние вида закона изменения плотности на значения компонент поля перемещений. Сформулирована новая коэффициентная обратная задача об определении функции распределения плотности в стенке цилиндра по данным о поле перемещений, измеренном в конечном наборе точек внутри области рассмотрения при фиксированной частоте. Отмечены основные трудности при реализации процедуры реконструкции на практике. Для увеличения точности вычисления первых и вторых производных от рассчитанных в конечно-элементном пакете двумерных функций, которые используются при решении обратной задачи, предложен подход, основанный на алгоритме локально взвешенной регрессии. Представлены результаты вычислительных экспериментов по решению обратной задачи, которые демонстрируют возможность использования предложенного метода для восстановления различных видов двумерных законов изменения плотности. Даны практические рекомендации по реализации наиболее эффективной процедуры реконструкции.