Аннотация:
Предложен численный алгоритм решения дифференциальных уравнений в полных дифференциалах, основанный как на эффективном вычислении интегрирующих множителей, так и на «новом» численном методе интегрирования функций. Устойчивое определение интегрирующих множителей обеспечивается за счет использования чебышевской интерполяции искомых функций и проведения расчетов на сетках Гаусса – Лобатто, обеспечивающих дискретную ортогональность чебышевских матриц. После чего процедура интегрирования осуществляется с помощью чебышевских матриц интегрирования. Интегрирующий множитель и итоговый потенциал решения обыкновенного дифференциального уравнения представляются в виде интерполяционных полиномов, зависящих от ограниченного количества численно восстанавливаемых коэффициентов разложения.