Аннотация:
Оценка уровня мошенничества в автостраховании представляет собой актуальную и сложную задачу, что обусловлено деятельностью мошеннических групп. Для уверенности менеджмента страховых компаний в стратегии противодействия мошенничеству необходим инструмент, позволяющий оценить текущее состояние портфеля претензий. Современные методы машинного обучения позволяют проводить такую оценку, используя данные о страхователях и страховых случаях. При применении данных подходов возникает ряд проблем, не позволяющих достичь необходимого качества выявления мошенничества. К ним можно отнести дисбаланс классов и так называемый дрейф концепции (concept drift), возникающий вследствие изменения сценариев схем мошенников и субъективности экспертной оценки конкретного страхового случая. В настоящем исследовании предлагается подход, позволяющий улучшить метрики моделей для выявления мошенничества в портфеле претензий. Численный эксперимент на двух открытых наборах данных показал прирост полноты выявления страхового мошенничества на 49 п.п. и 19 п.п. в сравнении с классическим моделированием.