Аннотация:
При построении треугольных конечных элементов оценки погрешности интерполяции для производных функции в знаменателе содержат синус наименьшего угла треугольника. Способ эрмитовой интерполяции многочленами третьей степени, предложенный Н. В. Байдаковой, при аппроксимации любых производных свободен от условия “синуса наименьшего угла”. В работе рассмотрен двумерный кубический элемент в методе конечных элементов, подобный элементу Н. В. Байдаковой. Полученные оценки погрешности для производных функции по направлениям до третьего порядка включительно не зависят явно от геометрии треугольника. Установлена с точностью до абсолютных констант неулучшаемость полученных оценок погрешности аппроксимации производных по направлениям.