RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2011, том 11, выпуск 2, страницы 61–77 (Mi isu220)

Механика

Алгоритм построения оптимальных систем одномерных подалгебр трехмерных уравнений математической теории пластичности

В. А. Ковалевa, Ю. Н. Радаевb

a Московский городской университет управления Правительства Москвы, кафедра прикладной математики
b Институт проблем механики им. А. Ю. Ишлинского РАН

Аннотация: Рассматривается естественная конечномерная (размерности 12) подалгебра алгебры симметрий, соответствующей группе симметрий предложенных в 1959 г. Д. Д. Ивлевым трехмерных гиперболических уравнений пространственной задачи теории идеальной пластичности для состояний, отвечающих ребру призмы Кулона–Треска, сформулированных в изостатической системе координат. Приводится алгоритм построения оптимальной системы одномерных подалгебр указанной естественной конечномерной подалгебры алгебры симметрий, насчитывающей один трехпараметрический элемент, 12 двухпараметрических, 66 однопараметрических элементов и 108 индивидуальных элементов (всего 187 элементов).

Ключевые слова: теория пластичности, изостатические координаты, группа симметрий, алгебра симметрий, подалгебра, оптимальная система, алгоритм.

УДК: 539.374

DOI: 10.18500/1816-9791-2011-11-2-61-77



© МИАН, 2024