Аннотация:
В работе исследуется смешанная задача для дифференциального уравнения первого порядка с инволюцией. Приводится обоснование применения методаФурье на основе полученных уточненных асимптотическихформул для собственных значений и собственных функций соответствующей спектральной задачи. Использованы приемы, позволяющие преобразовать ряд, представляющий формальное решение по методу Фурье, и доказать возможность его почленного дифференцирования. При этом на начальные данные задачи накладываются минимальные требования.
Ключевые слова:смешанная задача, инволюция, метод Фурье, классическое решение, асимптотика собственных значений и собственных функций, система Дирака.