RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2011, том 11, выпуск 4, страницы 86–108 (Mi isu270)

Механика

Связанные термоупругие волны третьего типа заданного азимутального порядка в волноводе с проницаемой для тепла стенкой

В. А. Ковалевa, Ю. Н. Радаевb

a Московский городской университет управления Правительства Москвы, кафедра прикладной математики
b Институт проблем механики им. А. Ю. Ишлинского РАН, Москва

Аннотация: Работа посвящена изучению распространения обобщенных связанных термоупругих волн заданного азимутального порядка в длинном цилиндрическом волноводе кругового поперечного сечения. При этом предполагается, что стенка волновода свободна от нагрузок и является проницаемой для тепла. Исследование проводится в рамках теории связанной обобщенной термоупругости третьего типа (GNIII), согласующейся с основными принципами термомеханики.
Данная теория сочетает оба известных типа распространения тепла в твердых деформируемых телах: термодиффузионный и волновой. Предельными случаями обобщенной термоупругости типа III являются классическая термоупругость (GNI/CTE) и гиперболическая термоупругость (GNII), которые могут быть сформулированы в терминах классической теории поля. Дифференциальные уравнения поля в этом случае принадлежат гиперболическому аналитическому типу. Методом разделения переменных в связанных уравнениях линейной термоупругости третьего типа получено их замкнутое аналитическое решение, которое удовлетворяет необходимым краевым условиям на боковой стенке волновода, в том числе условию конвективного теплообмена с окружающей средой. Установлено, что краевые условия на поверхности волновода выполняются отдельно для каждой из волн фиксированного азимутального порядка, поэтому волны различного азимутального порядка распространяются в волноводе независимо друг от друга. Для термоупругой волны заданного азимута построен частотный детерминант. Выполнен численный анализ частотного уравнения на предмет поиска его комплексных корней. При этом в частотном уравнении произведено выделение всех возможных однозначных ветвей квадратных радикалов. Детально описана схема локализации корней частотного уравнения и определены волновые числа связанных термоупругих волн, в частности, первого и седьмого азимутального порядков. Приведены результаты численного анализа в случае связанной волны азимутального порядка 70. Обсуждаются различные аспекты численной реализации предлагаемого подхода.

Ключевые слова: термомеханика, термоупругость, GNIII, частотное уравнение, волновод, волновое число, форма волны, азимутальный порядок, теплообмен.

УДК: 539.374

DOI: 10.18500/1816-9791-2011-11-4-86-108



© МИАН, 2024