RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2014, том 14, выпуск 1, страницы 38–47 (Mi isu484)

Эта публикация цитируется в 3 статьях

Математика

Асимптотические свойства и весовые оценки полиномов, ортогональных на неравномерной сетке с весом Якоби

М. С. Султанахмедов

Отдел математики и информатики, Дагестанский научный центр РАН, Махачкала

Аннотация: Пусть $-1=\eta_0<\eta_1<\eta_2<\dots<\eta_{N-1}<\eta_N=1$, $\lambda_N=\max_{0\leq j\leq N-1}(\eta_{j+1}-\eta_j)$. Работа посвящена исследованию свойств полиномов, образующих ортонормированную систему с весом Якоби $\kappa^{\alpha,\beta}(t)=(1-t)^\alpha(1+t)^\beta$ на произвольной (не обязательно равномерной) сетке $\Omega_N=\{t_j\}_{j=0}^{N-1}$ такой, что $\eta_j\leq t_j\leq\eta_{j+1}$. В случае целых $\alpha,\beta\geq0$ для построенных таким образом дискретных ортонормированных полиномов $\hat P_{n,N}^{\alpha,\beta}(t)$ ($n=0,\ldots,N-1$) при $n=O(\lambda_N^{-1/3})$ ($\lambda_N\to0$) получена асимптотическая формула вида $\hat P_{n,N}^{\alpha,\beta}(t)=\hat P_n^{\alpha,\beta}(t)+\upsilon_{n,N}^{\alpha,\beta}(t)$, в которой $\hat P_n^{\alpha,\beta}(t)$ – классический полином Якоби, $\upsilon_{n,N}^{\alpha,\beta}(t)$ – остаточный член. В качестве следствия асимптотической формулы получена весовая оценка полиномов $\hat P_{n,N}^{\alpha,\beta}(t)$ на отрезке $[-1,1]$.

Ключевые слова: ортогональные полиномы, неравномерная сетка, асимптотика, весовые оценки.

УДК: 517.518.82

DOI: 10.18500/1816-9791-2014-14-1-38-47



Реферативные базы данных:


© МИАН, 2024