RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2014, том 14, выпуск 2, страницы 199–209 (Mi isu502)

Эта публикация цитируется в 4 статьях

Механика

Об одной форме первой вариации интегрального функционала действия по растущей области

В. А. Ковалевa, Ю. Н. Радаевb

a Кафедра управления проектами и инвестициями, Московский городской университет управления Правительства Москвы
b Институт проблем механики им. А. Ю. Ишлинского РАН, Москва

Аннотация: В работе рассматриваются полевые теории механики и физики континуума, основой которых выступает принцип наименьшего действия. Действие в формулировках указанного принципа представляет собой интегральный функционал, варьирование которого осуществляется по физическим полевым переменным при неварьируемых пространственно-временных координатах. Однако теория вариационных симметрий действия и само понятие об инвариантных вариационных функционалах требует привлечения более широких способов варьирования, включающих трансформацию области интегрирования, т.е. изменение пространственно-временных координат. Последнее обстоятельство характерно также при выводе “естественных” граничных условий на неизвестных поверхностях сильного разрыва поля, границах соприкосновения различных фаз и иных неизвестных a priori поверхностей, варьирование которых допускается принципом наименьшего действия. Опираясь на теорию однопараметрических групп преобразований, в работе получены общие формы первой вариации действия при трансформациях пространственно-временных координат и физических полей с помощью групп преобразований, присущих четырехмерным формулировкам полевых теорий физики и механики. При этом учитываются “навязанные” граничные условия на поверхности, ограничивающей варьируемую область.

Ключевые слова: поле, действие, принцип наименьшего действия, уравнения поля, группа преобразований, группа Ли, инфинитезимальный генератор, вариация, варьируемая область, ограничение.

УДК: 539.374

DOI: 10.18500/1816-9791-2014-14-2-199-209



Реферативные базы данных:


© МИАН, 2024