Аннотация:
В статье рассматривается дифференциальный оператор Штурма–Лиувилля с потенциалом, имеющим конечное число точек разрыва первого рода. Конечной целью является численное восстановление потенциала такого вида. Основной результат представленной статьи — доказанная теорема и процедура, указывающие способ получения характеристик разрыва из начальных данных. Далее, используя полученные сведения о разрывах в ранее известных алгоритмах численного решения данной обратной задачи, например, в обобщенной итерационной схеме Ранделла–Сакса, приходим к улучшению точности восстановления потенциала на всем отрезке.