Аннотация:
Работа посвящена исследованию гармонических волн в наследственно-упругом слое, свойства материала которого описываются уравнениями состояния в интегральной форме. В качестве ядра интегрального оператора выбрана дробно-экспоненциальная функция Работнова. Рассмотрены два случая: случай симметричного и антисимметричного по нормальной координате напряженно-деформированного состояния (НДС). При изучении собственных колебаний исследованы свойства тех мод, которые изменяются во времени по гармоническому закону. Для обоих случаев выведены дисперсионные уравнения, которые решены численно. Также получены асимптотики корней дисперсионных уравнений для малых и больших значений частот. Анализ полученных решений позволил сделать выводы о влиянии наследственных факторов на поведение дисперсионных кривых. Проведен сравнительный анализ численных решений и их асимптотик.