Аннотация:
В настоящей статье вводятся дискретные ряды со свойством «прилипания» для периодического (по системе $\{\sin x\sin kx\}$) и непереодического (по системе полиномов Чебышёва второго рода $U_k(x)$) случаев. Показано, что дискретные ряды со свойством прилипания по системе $\{\sin x\sin kx\}$ выгодно отличаются от косинус-рядов Фурье тем, что их частичные суммы вблизи границ отрезка $[0,\pi]$ обладают значительно лучшими аппроксимативными свойствами. Аналогично, дискретные ряды со свойством прилипания по системе $U_k(x)$ вблизи границ отрезка $[-1,1]$ приближают исходную функцию значительно лучше, чем суммы Фурье по полиномам Чебышёва первого рода.
Ключевые слова:теория приближений, ряды Фурье, специальные ряды, покусочная аппроксимация.