Аннотация:
В работе рассмотрена ортогональная система вейвлетов и скалярных функций, основанных на полиномах Чебышева второго рода и их нулях. На их базе построена полная ортонормированная система функций. Показан недостаток в аппроксимативных свойствах частичных сумм соответствующего вейвлет-ряда, связанный со свойствами самих полиномов Чебышева и заключающийся в существенном ухудшении скорости их сходимости к исходной функции на концах отрезка ортогональности. В качестве альтернативы предлагается модифицировать вейвлет-ряд Чебышева второго рода по аналогии со специальными рядами по ортогональным полиномам со свойством «прилипания» на концах отрезка ортогональности. В случае лакунарных частичных сумм доказано, что такой новый специальный вейвлет-ряд лишен указанного недостатка, а следовательно, обладает более привлекательными аппроксимативными свойствами.
Ключевые слова:полиномиальные вейвлеты, специальный вейвлет-ряд, полиномы Чебышева второго рода, аппроксимация функций.