Аннотация:
Современный уровень развития нейроинформатики позволяет использовать искусственные нейронные сети для решения различных прикладных задач. Однако многие применяемые на практике нейросетевые методы не имеют строгого формального математического обоснования, являясь эвристическими алгоритмами. Это накладывает определенные ограничения на развитие нейросетевых методов решения задач. В то же время существует широкий класс математических моделей, хорошо изученных в рамках таких дисциплин, как теория абстрактных алгебр, теория графов, теория конечных автоматов. Возможность использовать результаты, полученные в рамках этих дисциплин, применительно к нейросетевым моделям может быть хорошим подспорьем в изучении искусственных нейронных сетей, их свойств и возможностей. В данной работе даны формулировки и определения нейросетевых моделей с точки зрения универсальной алгебры и теории графов. Приведены основные теоремы универсальной алгебры в нейросетевой трактовке. В статье также предлагается способ формального описания нейросети граф-схемой, которая позволяет использовать результаты теории графов для анализа нейросетевых структур.
Ключевые слова:нейронные сети, гомоморфизм, конгруэнция, граф-схема нейросети, вычисления на графе.