Аннотация:
Рассматривается в бикватернионной постановке кинематическая задача оптимальной нелинейной стабилизации произвольного программного движения свободного твердого тела. В качестве математической модели движения используется бикватернионное кинематическое уравнение возмущенного движения свободного твердого тела в двух различных формах, а в качестве управления — мгновенный винт скоростей движения тела. Каждый из минимизируемых функционалов характеризует собой интегральную величину энергетических затрат на управление и квадратичных отклонений параметров движения свободного твердого тела от их программных значений. С помощью принципа максимума Понтрягина построены законы оптимального управления и дифференциальные уравнения задачи оптимизации. Найдено аналитическое решение этой задачи. Приводятся результаты применения найденного закона кинематического управления к решению обратной задачи кинематики стэнфордского манипулятора.
Ключевые слова:оптимальное управление, твердое тело, бикватернион, обратная задача кинематики.