Аннотация:
В статье рассмотрена задача оптимальной коррекции угловых элементов орбиты космического аппарата. Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Комбинированный функционал качества характеризует затраты времени и энергии на процесс управления. С помощью принципа максимума Понтрягина и кватернионного дифференциального уравнения ориентации орбиты космического аппарата сформулирована дифференциальная краевая задача коррекции угловых элементов орбиты космического аппарата. Приведены закон оптимального управления, условия трансверсальности, не содержащие неопределенных множителей Лагранжа. Построены примеры численного решения задачи.
Ключевые слова:космический аппарат, орбита, оптимальное управление, кватернион, угловые элементы орбиты.