Аннотация:
В статье исследована краевая задача Штурма–Лиувилля на графе $\Gamma$ определенного вида. Граф $\Gamma$ имеет $m$ ребер, смежных с одной внутренней вершиной, а остальные $m$ вершин являются вершинами степени 1. Краевая задача на данном графе задается дифференциальными выражениями Штурма–Лиувилля с вещественными потенциалами, краевыми условиями Дирихле и стандартными условиями склейки. Определенная таким образом краевая задача имеет счетное множество собственных значений. Мы рассмотрим вычеты диагональных элементов матрицы Вейля в собственных значениях, которые назовем весовыми числами. Элементы матрицы Вейля являются мероморфными функциями с простыми полюсами в собственных значениях. Отметим, что весовые числа в данном случае являются обобщением весовых чисел оператора Штурма–Лиувилля на конечном интервале, которые определяются как обратные величины квадратов норм собственных функций. Эти числа вместе с собственными значениями играют роль спектральных данных для однозначного восстановления оператора. С помощью интегрирования по контурам будут получены асимптотические формулы для весовых чисел, в случае асимптотически близких собственных значений будем иметь формулы для сумм. Результаты могут быть использованы для анализа обратных спектральных задач на графах.
Ключевые слова:краевая задача Штурма–Лиувилля, асимптотические формулы, весовые числа, граф-звезда.