RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2009, том 9, выпуск 4(1), страницы 44–49 (Mi isu75)

Математика

О полноте произведений системы функций, порождаемых сингулярными дифференциальными уравнениями

Д. В. Поплавский

Саратовский государственный университет, кафедра вычислительной математики и математической физики

Аннотация: В статье приводится теорема о полноте специальных вектор-функций, инициированных произведениями так называемых решений Вейля дифференциального уравнения четвертого порядка и их производными на полуоси. Доказывается, что такие нелинейные комбинации решений Вейля и их производных образуют линейное подпространство убывающих на бесконечности решений линейной сингулярной дифференциальной системы типа Камке. Строится и исследуется функция Грина соответствующей сингулярной краевой задачи на полуоси для пучков операторов, определяющих дифференциальную систему типа Камке. Используя аналитические и асимптотические свойства функции Грина, методы спектральной теории операторов и теории аналитических функций, доказывается искомая теорема о полноте.

Ключевые слова: теорема о полноте, произведения решений Вейля, краевые задачи, функция Грина.

УДК: 517.9

DOI: 10.18500/1816-9791-2009-9-4-1-44-49



© МИАН, 2024