Аннотация:
Ранее было доказано, что суперхарактеры Эйлера супералгебры Ли $\mathfrak{osp}(2m+1,2n)$ являются предельным случаем супермногочленов Якоби. Этот результат был первым примером, показывающим, какого рода связи возникают между собственными функциями деформированных операторов Калоджеро–Мозера–Сазерленда и теорией представлений. К сожалению, доказательство этого результата было чисто вычислительным. В данной работе мы предлагаем более простое и концептуальное доказательство, основная идея которого заключается в использовании с самого начала формулы Пиери. Мы надеемся, что наш подход окажется полезным во многих аналогичных ситуациях.