Аннотация:
В работе рассматривается задача о внедрении в функционально-градиентное упругое полупространство осесимметричного штампа. Предполагается, что штамп является телом вращения, подошва которого имеет параболическую форму, а контакт между штампом и неоднородным слоем гладкий. При решении контактной задачи используется двухсторонний асимптотический метод. В численном эксперименте анализируется напряженно-деформированное состояние покрытия, модуль Юнга которого является непрерывной гладкой немонотонной функцией, первая производная которой изменяет свой знак конечное число раз по глубине покрытия.