RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2020, том 20, выпуск 1, страницы 29–41 (Mi isu826)

Научный отдел
Математика

О геометрии трехмерных псевдоримановых однородных пространств. I

Н. П. Можей

Белорусский государственный университет информатики и радиоэлектроники, Беларусь, 220013, г. Минск, ул. П. Бровки, д. 6

Аннотация: Одной из важных проблем геометрии является задача об установлении связей между кривизной и топологической структурой многообразия. В общем случае задача исследования многообразий различных типов является достаточно сложной. Поэтому естественно рассматривать данную задачу в более узком классе псевдоримановых многообразий, например, в классе однородных псевдоримановых многообразий. В статье определены основные понятия — изотропно-точная пара, псевдориманово однородное пространство, аффинная связность, тензоры кривизны и кручения, связность Леви–Чевита, тензор Риччи, Риччи-плоское, Эйнштейново, Риччи-параллельное, локально-симметрическое, конформно-плоское пространства. В работе для трехмерных римановых однородных пространств определено, при каких условиях пространство является Риччи-плоским, Эйнштейновым, Риччи-параллельным, локально-симметрическим или конформно-плоским. Кроме этого, для всех указанных пространств выписаны в явном виде связности Леви–Чевита, тензоры кривизны и кручения, алгебры голономии, скалярные кривизны, тензоры Риччи. Полученные результаты могут найти приложения в математике и физике, поскольку многие фундаментальные задачи в этих областях сводятся к изучению инвариантных объектов на однородных пространствах.

Ключевые слова: группа преобразований, риманово многообразие, тензор Риччи, Эйнштейново пространство, конформно-плоское пространство.

УДК: 514.765

Поступила в редакцию: 03.11.2018
Принята в печать: 31.01.2019

DOI: 10.18500/1816-9791-2020-20-1-29-41



Реферативные базы данных:


© МИАН, 2024