Аннотация:
В статье исследованы свойства положительных решений модельной системы двух нелинейных обыкновенных дифференциальных уравнений с переменными коэффициентами. Найдены новые условия на коэффициенты, при выполнении которых произвольное решение $(x(t), y(t))$ с положительными начальными значениями $x(0)$ и $y(0)$ положительно, нелокально продолжимо и ограничено при $t>0$. В этих условиях исследован вопрос о глобальной устойчивости положительных решений методом построения направляющей функции и методом предельных уравнений. Методом построения направляющей функции доказано, что если система уравнений имеет положительное постоянное решение $(x_*, y_*)$, то любое положительное решение $(x(t), y(t))$ при $t\rightarrow +\infty$ приближается к $(x_*,y_*)$. А в случае, когда коэффициенты системы уравнений имеют конечные пределы при $t\rightarrow +\infty$ и предельная система уравнений имеет положительное постоянное решение $(x_{\infty},y_{\infty})$, методом предельных уравнений доказано, что любое положительное решение $(x(t), y(t))$ при $t\rightarrow +\infty$ приближается к $(x_{\infty}, y_{\infty})$. Полученные результаты впоследcтвии можно обобщить для многомерного аналога исследуемой системы уравнений.
Ключевые слова:модельная система нелинейных обыкновенных дифференциальных уравнений, положительное решение, нелокальное продолжение, глобальная устойчивость положительных решений, метод построения направляющей функции, метод предельных уравнений.
УДК:517.925.4
Поступила в редакцию: 17.06.2019 Принята в печать: 30.09.2019