Аннотация:
В работе излагаются результаты, полученные при разработке системы моделирования процессов генерации внешним электрическим полем безмассовых носителей заряда с фотоноподобным спектром для двумерных сред. Основой системы является физическая модель процесса, построенная в формализме
кинетического уравнения для адекватной квантово-полевой теории. При этом не используются упрощающие предположения, в том числе разложения по каким-либо малым параметрам (теория возмущений). В этом смысле используемая модель является точной. Она оформлена в виде системы ОДУ первого порядка, для которой ставится задача Коши.
Основной проблемой является вычислительная сложность определения наблюдаемых величин по характеристикам модели. Непосредственно решение системы ОДУ дает информацию только о вероятности заселения некоторого конкретного конечного состояния на двумерном континууме потенциально допустимых импульсных состояний. Область локализации заселяемых состояний, гладкость их распределения в импульсном пространстве, а следовательно, размеры и плотность необходимой сетки заранее не известны. Эти параметры зависят от характеристик внешнего поля и являются предметом определения в процессе моделирования. Вычислительная сложность собственно решения модельной системы уравнений для заданной точки импульсного пространства тоже представляет собой открытую проблему. В представленном случае такая задача всегда решается на одном вычислительном ядре. Но необходимое для этого время зависит как от характеристик вычислителя, так и от типа, вида и реализации метода интегрирования. Оптимальный их выбор, как продемонстрировано далее, очень существенно влияет на ресурсы, необходимые для решения всей задачи. При этом из-за большой вариативности характера поведения системы уравнений при изменении физических параметров модели оптимизация выбора методов интегрирования не является глобальной. К этому вопросу приходится возвращаться при каждом существенном изменении параметров исследуемой модели.