Аннотация:
Работа посвящена исследованию решения одного класса слабо сингулярных поверхностных интегральных уравнений второго рода. Сначала дается разбиение поверхности Ляпунова на «регулярные» элементарные части, а затем в опорных точках строится кубатурная формула для одного класса слабо сингулярных поверхностных интегралов. Используя построенную кубатурную формулу, рассматриваемое интегральное уравнение заменяется системой алгебраических уравнений. В результате при дополнительно налагаемых условиях на ядро интеграла доказывается, что рассматриваемое интегральное уравнение и полученная система алгебраических уравнений имеют единственные решения, причем решение системы алгебраических уравнений сходится к значению решения интегрального уравнения в опорных точках. Кроме того, используя эти результаты, дано обоснование метода коллокации для различных интегральных уравнений внешней краевой задачи Дирихле для уравнения Гельмгольца.
Ключевые слова:метод коллокации, интегральные уравнения второго рода, кубатурная формула, слабо сингулярный поверхностный интеграл, краевые задачи для уравнения Гельмгольца.
УДК:
519.64,517.2
Поступила в редакцию: 04.06.2019 Исправленный вариант: 11.09.2019