Аннотация:
Рассматриваются дифференциальные уравнения линейной микрополярной теории упругости в случае гармонической зависимости поля перемещений и микровращений от времени, из которой выводятся связанные уравнения для потенциалов. Предложена новая схема расщепления связанных векторных дифференциальных уравнений микрополярной теории упругости для потенциалов на несвязанные дифференциальные уравнения первого порядка. Получено представление векторов перемещений и микровращений с помощью системы четырех винтовых векторов, обеспечивающее выполнимость связанных векторных дифференциальных уравнений, после чего проблема определения вихревых составляющих перемещений и микровращений сводится к решению четырех не связанных между собой векторных винтовых дифференциальных уравнений первого порядка с частными производными. Указанное представление пригодно для использования в прикладных задачах механики, связанных с распространением пространственных гармонических волн перемещений и микровращений вдоль длинных волноводов.