Аннотация:
В кватернионной постановке рассмотрена задача математического моделирования движения космического аппарата (КА) по эллиптической орбите. Постоянное по модулю управление (вектор ускорения от реактивной тяги) направлено ортогонально плоскости орбиты КА. Для описания движения центра масс КА использовано кватернионное дифференциальное уравнение ориентации орбитальной системы координат. Построено приближённое аналитическое решение кватернионного дифференциального уравнения ориентации орбитальной системы координат в виде разложения по системе линейно независимых базисных функций. Для нахождения неизвестных кватернионных коэффициентов этого разложения был использован метод поточечной коллокации. Учёт известного решения уравнения ориентации орбитальной системы координат для случая, когда орбита КА является круговой, позволил упростить вид вышеуказанного разложения. Относительно искомых коэффициентов получена система линейных алгебраических уравнений, в которой компоненты матрицы жёсткости и столбца свободных членов являются кватернионами. Для проведения численного моделирования движения КА была составлена программа на языке Python. Проведено сравнение расчётов по аналитическим формулам, полученным в работе, и численного решения задачи Коши методом Рунге – Кутты 4-го порядка точности. Составлены таблицы погрешности определения ориентации орбитальной системы координат для случаев, когда базисные функции являются полиномами и тригонометрическими функциями. Приведены примеры численного решения задачи для случая, когда начальная ориентация орбитальной системы координат соответствует ориентации орбиты одного из спутников орбитальной группировки ГЛОНАСС. Построены графики изменения компонент кватерниона погрешности определения ориентации орбитальной системы координат. Проведён анализ полученных решений. Установлены особенности и закономерности процесса движения КА по эллиптической орбите.