RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2021, том 21, выпуск 2, страницы 267–277 (Mi isu892)

Эта публикация цитируется в 2 статьях

Научный отдел
Информатика

Построение цветных графов без проверки на изоморфизм

П. В. Разумовский, М. Б. Абросимов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

Аннотация: В работе рассматриваются графы, вершины или ребра которых раскрашены в заданное количество цветов — вершинные и реберные раскраски. Изучение раскрасок графов началось с середины XIX в., однако основное внимание уделяется правильным раскраскам, в которых накладывается ограничение, что цвета смежных вершин или ребер должны быть различными. В данной работе рассматриваются раскраски графов без каких-либо ограничений. Исследуется задача генерации всех неизоморфных вершинных и реберных $k$-раскрасок заданного графа без непосредственной проверки на изоморфизм. Задача о нахождении неизоморфных реберных $k$-раскрасок сводится к задаче построения всех вершинных $k$-раскрасок графа. В основе методов генерации графов без непосредственной проверки на изоморфизм лежит метод канонических представителей. Идея метода состоит в том, что предлагается способ кодирования графов и выбирается некоторое правило, по которому из всех изоморфных графов один граф объявляется каноническим. Строятся все коды и из них оставляются только канонические. Часто в качестве канонического выбирается представитель с наибольшим или наименьшим кодом. На практике порождение всех кодов требует больших вычислительных ресурсов, поэтому используются различные методы оптимизации перебора. В работе предлагаются два алгоритма решения задачи генерации вершинных $k$-раскрасок без проверки на изоморфизм методом МакКея и методом Рида – Фараджева. Производится сравнение разработанных алгоритмов генерации раскрасок на двух классах графов — цепях и циклах. Вычислительные эксперименты показывают, что для цепей и циклов алгоритм, построенный на основе метода Рида – Фараджева, работает быстрее.

Ключевые слова: граф, разметка графа, раскраска графа, цветной граф, генератор.

УДК: 519.17

Поступила в редакцию: 20.06.2020
Исправленный вариант: 12.10.2020

DOI: 10.18500/1816-9791-2021-21-2-267-277



Реферативные базы данных:


© МИАН, 2024