Аннотация:
В статье рассматривается краевая задача типа задачи Неймана для решений одного эллиптического дифференциального уравнения второго порядка. На основе общего представления решений рассматриваемого дифференциального уравнения через две аналитические функции комплексного переменного, а также с учетом свойств уравнений Шварца для окружностей устанавливается, что в случае круговых областей исследуемая краевая задача решается в явном виде, т. е. ее общее решение можно найти, используя лишь формулы Ф. Д. Гахова для решения скалярной задачи сопряжения для аналитических функций комплексного переменного, а также решая конечное число линейных дифференциальных уравнений и (или) систем линейных алгебраических уравнений, для которых матрица системы может быть выписана в квадратурах.
Ключевые слова:дифференциальное уравнение Бауэра, краевая задача Неймана, уравнение Шварца, явное решение, круговая область.
УДК:517.544.8
Поступила в редакцию: 06.02.2021 Принята в печать: 26.03.2021