RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2021, том 21, выпуск 4, страницы 458–471 (Mi isu910)

Научный отдел
Математика

Двоичные базисные сплайны в кратномасштабном анализе

С. А. Чумаченко

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

Аннотация: B-сплайны были введены Карри и Шёнбергом. Построенные на равномерной сетке и определенные в терминах сверток, такие сплайны порождают КМА Рисса. В статье рассмотрены сплайны $\varphi_n$, которые получаются $n$-кратным интегрированием функции Уолша с номером $2^n-1$. Эти сплайны в статье названы двоичными базисными сплайнами. Ранее было доказано, что двоичные базисные сплайны образуют базис в пространстве функций, непрерывных на отрезке $[0, 1]$ и обращающихся в $0$ за его пределами. В статье доказывается, что каждый двоичный базисный сплайн будет масштабирующей функцией и порождает кратномасштабный анализ $(V_n)$, который не является риссовским. Тем не менее будет указан порядок приближения функций из пространств Соболева подпространствами $(V_n)$.

Ключевые слова: базисные сплайны, гладкая интерполяция, кратномасштабный анализ, пространства Соболева.

УДК: 517.98

Поступила в редакцию: 13.06.2021
Принята в печать: 24.07.2021

DOI: 10.18500/1816-9791-2021-21-4-458-471



Реферативные базы данных:


© МИАН, 2024