Аннотация:
B-сплайны были введены Карри и Шёнбергом. Построенные на равномерной сетке и определенные в терминах сверток, такие сплайны порождают КМА Рисса. В статье рассмотрены сплайны $\varphi_n$, которые получаются $n$-кратным интегрированием функции Уолша с номером $2^n-1$. Эти сплайны в статье названы двоичными базисными сплайнами. Ранее было доказано, что двоичные базисные сплайны образуют базис в пространстве функций, непрерывных на отрезке $[0, 1]$ и обращающихся в $0$ за его пределами. В статье доказывается, что каждый двоичный базисный сплайн будет масштабирующей функцией и порождает кратномасштабный анализ $(V_n)$, который не является риссовским. Тем не менее будет указан порядок приближения функций из пространств Соболева подпространствами $(V_n)$.
Ключевые слова:базисные сплайны, гладкая интерполяция, кратномасштабный анализ, пространства Соболева.
УДК:517.98
Поступила в редакцию: 13.06.2021 Принята в печать: 24.07.2021