Аннотация:
Кластеризация на основе категориальных данных — одна из сложных задач интеллектуального анализа данных. В статье представлен алгоритм кластеризации вакансий с использованием информации о необходимых навыках. На первом этапе предлагается процедура стандартизации неструктурированной текстовой информации. Полученные процедуры включают этапы идентификации синонимов и общих терминов на основе сочетания подходов TF-IDF и $n$-граммов для переведенных и транслитерированных терминов. Затем предложенный алгоритм проверяется на данных, полученных с межрегиональной платформы online-рекрутмента. Алгоритм обеспечивает проверку количества извлеченных кластеров, включая иерархический кластерный анализ и коалиционный поиск Гирвана – Ньюмана. Результирующее количество кластеров проверяется при помощи внутренних оценок достоверности и предлагает непересекающиеся наборы терминов, которые описывают определенные группы профессий в секторе информационных технологий. На основе полученных кластеров хорошо совпадающие и несовпадающие термины идентифицируются с использованием индексов Силуэта (Silhouette Index). Указанные в статье процедуры позволяют минимизировать участие человека в процессе кластеризации и создавать интерпретируемые кластеры для последующего анализа. В целом, подход к идентификации кластеров на основе категориальных данных представлен и протестирован на выборке онлайн-объявлений о вакансиях. Он имеет большой потенциал использования для задач формирования факторов в исследованиях машинного обучения и для прикладных исследований рынка труда в экономике.
Ключевые слова:онлайн-объявления о вакансиях, набор навыков в ИТ, несоответствие профессий, кластеризация вакансий, обработка естественного языка.
УДК:
51-77
Поступила в редакцию: 07.08.2021 Принята в печать: 08.02.2022