RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2022, том 22, выпуск 4, страницы 416–429 (Mi isu953)

Научный отдел
Математика

Представление функций на прямой рядами экспоненциальных мономов

А. С. Кривошеевa, О. А. Кривошееваb

a Институт математики с вычислительным центром Уфимского федерального исследовательского центра РАН, Россия, 450008, г. Уфа, ул. Чернышевского, д. 112
b Башкирский государственный университет, Россия, 450076, г. Уфа, ул. З. Валиди, д. 32

Аннотация: В работе рассматриваются весовые пространства интегрируемых $L_p^\omega$ $(p\geq 1)$ и непрерывных $C^\omega$ функций на вещественной прямой. Пусть $\Lambda=\{\lambda_k,n_k\}$  — неограниченно возрастающая последовательность положительных чисел $\lambda_k$ и их кратностей $n_k$, $\mathcal{E}(\Lambda)=\{t^n e^{\lambda_k t}\}$  — система экспоненциальных мономов, построенная по последовательности $\Lambda$. Изучаются подпространства $W^p (\Lambda,\omega)$ и $W^0 (\Lambda,\omega)$, которые являются замыканиями системы $\mathcal{E}(\Lambda)$ в пространствах $L_p^\omega$ и $C^\omega$ соответственно. При естественных ограничениях на $\Lambda$ (ограниченность индекса конденсации $S_\Lambda$ и $n_k/\lambda_k\leq c$, $k\geq 1$) и выпуклый вес $\omega$ получены условия, при которых каждая функция из этих подпространств продолжается до целой и представляется рядом по системе $\mathcal{E}(\Lambda)$, который сходится абсолютно и равномерно на компактах в плоскости. В отличие от известных ранее результатов по указанной задаче представления в работе не требуется, чтобы последовательность $\Lambda$ имела плотность, и не накладывается условие отделимости, которое присутствует в этих результатах: $\lambda_{k+1}-\lambda_k\geq h$, $k\geq 1$ (вместо него используется условие равенства нулю специального индекса конденсации).

Ключевые слова: ряд экспоненциальных мономов, весовое пространство, аналитическое продолжение, индекс конденсации.

УДК: 517.98

Поступила в редакцию: 18.03.2022
Исправленный вариант: 15.04.2022

DOI: 10.18500/1816-9791-2022-22-4-416-429



Реферативные базы данных:


© МИАН, 2024