RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика // Архив

Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 2023, том 23, выпуск 3, страницы 370–410 (Mi isu991)

Эта публикация цитируется в 1 статье

Научный отдел
Механика

Математические модели деформирования оболочечных конструкций и алгоритмы их исследования Часть I. Модели деформирования оболочечных конструкций

В. В. Карпов, П. А. Бакусов, А. М. Масленников, А. А. Семенов

Санкт-Петербургский государственный архитектурно-строительный университет, Россия, 190005, г. Санкт-Петербург, ул. 2-я Красноармейская, д. 4

Аннотация: Приводятся сведения по истории развития теории тонких оболочек в хронологическом порядке с указанием конкретных ученых и их вклада в совершенствование теории. Обзор работ состоит из тех публикаций, которые касаются именно разработки теории оболочек. Излагаются математические модели деформирования тонких упругих оболочек, как наиболее точные, так и упрощенные. Изложение ведется на основе публикации российских авторов, вклад которых в совершенствование теории оболочек наиболее существенен (В. В. Новожилов, А. И. Лурье, А. Л. Гольденвейзер, Х. М. Муштари, В. З. Власов). Отмечены также ученые, внесшие существенный вклад в теорию, методы расчета, исследования прочности, устойчивости и колебаний оболочек. Отдельно показано применение этих моделей для исследования ребристых оболочек. Приводятся сведения по разработке нелинейной теории оболочек и показаны нелинейные соотношения для деформаций. Анализируются математические модели деформирования тонких оболочек, полученные разными авторами. Показано, что если срединная поверхность оболочки отнесена к ортогональной системе координат, то выражения деформаций, полученные разными авторами, практически совпадают (отличаются членами, которыми ввиду их малости можно пренебречь). А. Л. Гольденвейзером разработаны математические модели деформирования тонких оболочек, когда их срединная поверхность отнесена к произвольной косоугольной системе координат. Для задач статики записывается функционал полной потенциальной энергии деформации, представляющий собой разность потенциальной энергии и работы внешних сил. Из условия минимума этого функционала выводятся уравнения равновесия и естественные краевые условия. Для задач динамики составляется функционал полной энергии деформации оболочки, в котором кроме потенциальной энергии деформации оболочки и работы внешних сил участвует еще и кинетическая энергия деформации оболочки. Также из условия минимума этого функционала выводятся уравнение движения и естественные краевые и начальные условия. Приводятся некоторые сведения по результатам современных исследований в теории тонких оболочек.

Ключевые слова: упругие тонкие оболочки, история развития, ребристые оболочки, упрощенные теории оболочек, современные проблемы, вариационные методы, уравнения равновесия, уравнения движения.

УДК: 539.3

Поступила в редакцию: 16.11.2022
Принята в печать: 16.01.2023

DOI: 10.18500/1816-9791-2023-23-3-370-410



© МИАН, 2024