Аннотация:
Формулируются дифференциальные уравнения для плотностей вероятности фазовых координат динамических систем с параметрическими флуктуациями в виде немарковского дихотомического шума, имеющего произвольные функции распределения времён жизни в состояниях $\pm 1$. В качестве примера вычислен первый момент фазовой координаты линейного осциллятора, возмущённое движение которого описывается стохастическим аналогом уравнения Матье – Хилла. Цель этих вычислений – показать, что в случае линейных динамических систем параметрические флуктуации способны индуцировать состояния, которых нет в детерминированном режиме. Задача решается при помощи метода дополнительных переменных, позволяющего за счет расширения фазового пространства перевести немарковский дихотомический шум в марковский. Показано присутствие незатухающих колебаний амплитуд в форме биений, когда в структуре дихотомического шума есть функции распределения времен его жизни в состояниях $\pm 1$ в виде суммы двух взвешенных экспонент. Марковская модель осциллятора дает только затухающие колебания. Свойства дельта-коррелированности и гауссовости исследуемого процесса не используются. Вычисления проводятся в рамках простых дифференциальных уравнений без привлечения интегральных операторов.