Аннотация:
В работе рассматривается задача понижения размерности пространства признаков для описания объектов в задачах анализа данных на примере бинарной классификации. В статье приводится обзор существующих подходов к решению данной задачи и предлагается несколько модификаций, в которых понижение размерности рассматривается как задача извлечения наиболее релевантной информации из признакового описания объектов и решается в терминах Шеноновской энтропии. Для выявления наиболее значимых признаков используются такие информационные критерии, как условная энтропия (conditional entropy), взаимная информация (mutual information) и расстояние Кульбака-Ляйблера (Kullback-Leibler divergence).
Ключевые слова:понижение размерности, отбор признаков, классификация, энтропия.