Аннотация:
В статье получено обобщение одного результата М. Ш. Бирмана и М. 3. Соломяка о кусочно-полиномиальных приближениях классов $W_p^\alpha$ (Матем. сб., т. 73 (115):3, 1967, с. 331–355). В указанной работе оценивалась скорость приближения функций соболевских классов $W_p^r$ ($pr>m$) кусочно-полиномиальными функциями в метрике «весовых» пространств $L_q(Q;p)$, где $q\ge1$, $Q$ есть $m$-мерный единичный куб, а $p$ — конечная борелевская мера. Этот результат переносится для $m\ge2$ на случай локально конечных мер, имеющих «несуммируемые» особенности на границе куба $Q_m$ и функций из $W_p^r(Q_m)$, обращающихся в нуль на границе куба $Q_m$. Полученный результат применяется для обобщения известной асимптотической формулы спектра краевой задачи для полигармонического оператора $(-\Delta)^l$ в пространствах $L_2(Q^m;\rho)$ на случай локально конечных (но не конечных) мер $\rho$ при $m\ge2$ и $2l>m$.