Аннотация:
Рассматриваются дифференциальные уравнения $1$-го порядка, стохастическая природа которых определяется марковским процессом с непрерывным временем. Показывается, что применение уравнения Фоккера–Планка–Колмогорова приводит к системе дифференциальных уравнений переноса. Формулируется теорема о характеристиках полученной системы дифференциальных уравнений в частных производных. Делаются основные выводы о необходимых условиях для вычисления плотностей вероятности. Приводится пример решения.
Ключевые слова:стохастическое дифференциальное уравнение, марковский процесс с непрерывным временем, уравнение Фоккера–Планка–Колмогорова, плотность вероятности, функция корреляции.