Аннотация:
Рассматривается обобщенное уравнение Кортевега–де Фриза (КдФ) и Кортевега–де Фриза–Бюргерса (КдФБ) с периодическими по пространственной переменной краевыми условиями. Для различных значений параметров в достаточно малой окрестности нулевого состояния равновесия строятся асимптотики периодических решений и инвариантных торов. Отдельно рассматривается случай, когда в спектре устойчивости нулевого решения оказывается счетное число корней характеристического уравнения. В этой ситуации строится специальная нелинейная краевая задача, играющая роль нормальной формы и определяющая динамику исходной задачи.
Ключевые слова:дифференциальное уравнение в частных производных, торы, метод нормальных форм, бифуркация.