Аннотация:
Продолжаем изучать $C^*$-алгебру, ассоциированную с заданным на счетном множестве $X$ отображением $\varphi$, которое можно представить в виде некоторого направленного графа. Алгебра относится к классу операторных алгебр, порожденных семейством частичных изометрий, которые удовлетворяют соотношениям на начальные и конечные проекторы. Ранее был сформулирован критерий неприводимости таких алгебр. С его помощью исследуем структуру подлежащего гильбертова пространства. Показано, что для приводимых алгебр гильбертово пространство представляется либо в виде бесконечной прямой суммы инвариантных подпространств, либо в виде тензорного произведения конечномерного гильбертова пространства и $l^2(\mathbb{Z})$. В первом случае приводятся условия, когда исследуемая алгебра имеет неприводимое представление в $C^*$-алгебру, порожденную оператором обобщенного сдвига. Во втором случае алгебра имеет неприводимые конечномерные представления, индексированные единичной окружностью.