RUS  ENG
Полная версия
ЖУРНАЛЫ // Известия высших учебных заведений. Математика // Архив

Изв. вузов. Матем., 2020, номер 3, страницы 64–73 (Mi ivm9551)

Эта публикация цитируется в 2 статьях

Об эллиптических однородных дифференциальных операторах в гранд-пространствах

С. М. Умархаджиев

Академия наук Чеченской Республики, Комплексный научно-исследовательский институт Российской академии наук им. Х. Ибрагимова, пр. М. Эсембаева, д. 13, г. Грозный, 364024, Россия

Аннотация: Дается приложение развиваемой в последние годы теории функциональных пространств, известных как гранд-пространство Лебега и гранд-пространство Соболева, к дифференциальным уравнениям в частных производных. В случае неограниченных областей такие пространства строятся с использованием так называемых грандизаторов. При некоторых естественных предположениях о выборе грандизатора для произвольного эллиптического однородного дифференциального оператора $P_m(D)$ четного порядка с постоянными вещественными коэффициентами доказывается существование в некотором гранд-пространстве Соболева решения уравнения $P_m(D)u(x)=f(x)$, $x\in \mathbb{R}^n$, $m<n$, с правой частью из соответствующего гранд-пространства Лебега. Кроме того, для указанных многочленов $P_m(x)$ в общем случае уточняются известные факты для соответствующего фундаментального решения: оно строится в явном виде либо в виде сферических гиперсингулярных интегралов, либо в виде некоторых средних по плоским сечениям единичной сферы.

Ключевые слова: эллиптический однородный дифференциальный оператор, гранд-пространство Лебега, гранд-пространство Соболева, грандизатор, фундаментальное решение, сферический гиперсингулярный интеграл.

УДК: 517.982: 517.968

Поступила: 02.11.2018
Исправленный вариант: 02.11.2018
Принята к публикации: 18.12.2019

DOI: 10.26907/0021-3446-2020-3-64-73


 Англоязычная версия: Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:3, 57–65

Реферативные базы данных:


© МИАН, 2024