Аннотация:
В статье рассматривается динамическая система с запаздыванием, описываемая дифференциальным уравнением в частных производных гиперболического типа и запаздыванием по временной переменной. Введением подходящих функций Ляпунова в пространстве $\mathbb{R}^n$, $n>4$, мы устанавливаем $k(t)$-устойчивость слабого решения при надлежащих граничных условиях (теорема 3.1).